科研助力 | 探索土壤碳循環(huán)的奧秘 LICA 土壤呼吸監(jiān)測(cè)系統(tǒng)助力前沿科研
日期:
2025-04-14
瀏覽次數(shù):
15

土壤呼吸是陸地生態(tài)系統(tǒng)碳通量的重要環(huán)節(jié),對(duì)全球碳循環(huán)和氣候變化研究具有決定性影響。如何精準(zhǔn)測(cè)量CO2、CH4、N2O等溫室氣體通量?如何在極端環(huán)境中實(shí)現(xiàn)長(zhǎng)期、穩(wěn)定、高精度監(jiān)測(cè)?
How to achieve long-term, stable, and high-precision monitoring in extreme environments?
PS-9000便攜式土壤碳通量自動(dòng)測(cè)量系統(tǒng)
理加聯(lián)合(LICA)憑借16年技術(shù)深耕,推出?SF-3000/3500、PS-9000、PS-3000、PS-3010?等一系列土壤呼吸監(jiān)測(cè)系統(tǒng)。銷量突破 539 套,2287 臺(tái)呼吸室(截至 2024 年底),國(guó)內(nèi)外研究機(jī)構(gòu)與高校廣泛使用,論文發(fā)表覆蓋nature communication、Journal of Environmental Management、Science of the Total Environment等期刊!
SF-3500 系列多通道土壤氣體通量測(cè)量系統(tǒng)
PS-3010超便攜CH4/CO2土壤呼吸系統(tǒng)
- Zhang, R.; Qu, Z.; Yang, W.; Wang, L.; Zhang, D.; Liu, L.; Li, J.; Zhang, Z. Biochar Addition Enhances Annual Carbon Stocks and Ecosystem Carbon Sink Intensity in Saline Soils of the Hetao Irrigation District, Inner Mongolia. Plant Soil Environ. 2024, 70 (5), 263–275. https://doi.org/10.17221/121/2023-PSE.
- Xu, Y.; Liao, B.; Jiang, Z.; Xin, K.; Xiong, Y.; Guan, W. Emission of Greenhouse Gases (CH4?and CO2) into the Atmosphere from Restored Mangrove Soil in South China. Journal of Coastal Research 2020, 37 (1). https://doi.org/10.2112/JCOASTRES-D-20-00054.1.
- Zhang, R.; Qu, Z.; Yang, W.; Li, J.; Wang, L.; Liu, Q.; Zhang, D.; Qiao, T.; Zhao, Y. Evaluating Annual Soil Carbon Emissions under Biochar-Added Farmland Subjecting from Freeze-Thaw Cycle. Journal of Environmental Management 2024, 365, 121506. https://doi.org/10.1016/j.jenvman.2024.121506.
- Zhang, R.; Qu, Z.; Liu, L.; Yang, W.; Wang, L.; Li, J.; Zhang, D. Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors. Atmosphere 2022, 13 (12), 2038. https://doi.org/10.3390/atmos13122038.
- Li, Y.; Wang, G.; Bing, H.; Wang, T.; Huang, K.; Song, C.; Chen, X.; Hu, Z.; Rui, P.; Song, X.; Chang, R. Watershed Scale Patterns and Controlling Factors of Ecosystem Respiration and Methane Fluxes in a Tibetan Alpine Grassland. Agricultural and Forest Meteorology 2021, 306, 108451. https://doi.org/10.1016/j.agrformet.2021.108451.?
- Wang, P.; Ouyang, W.; Zhu, W.; Cui, X.; Wang, J.; Lin, C. Dissolved Organic Matter Movements from Forests Influence Downstream Soil CO2?Flux during Thawing. CATENA 2023, 233, 107497. https://doi.org/10.1016/j.catena.2023.107497.
- Ouyang, W.; Wang, P.; Liu, S.; Hao, X.; Wu, Z.; Cui, X.; Jin, R.; Zhu, W.; Lin, C. Rainfall Stimulates Large Carbon Dioxide Emission during Growing Season in a Forest Wetland Catchment. Journal of Hydrology 2021, 602, 126892. https://doi.org/10.1016/j.jhydrol.2021.126892.
- Shang, X.; Gao, T.; Yao, T.; Zhang, Y.; Zhao, Y.; Zhao, Y.; Luo, X.; Chen, R.; Kang, S. Riverine Carbon Dioxide Release in the Headwater Region of the Qilian Mountains, Northern China. Journal of Hydrology 2024, 632, 130832. https://doi.org/10.1016/j.jhydrol.2024.130832.
- Guan, X.; Zhang, Y.; Niu, H.; Shi, P.; Cao, M.; Zu, P.; Xu, D.; Zhao, Q.; Wang, B.; Cui, L.; Gómez, J. A. Seasonal Evolution of Soil Respiration and Sources of Respirable Carbon in Three Forest Stands on the Loess Plateau of China. Land Degrad Dev 2024, 35 (18), 5701–5712. https://doi.org/10.1002/ldr.5325.
- Fan, L.; Cheng, J.; Xie, Y.; Xu, L.; Buttler, A.; Wu, Y.; Fan, H.; Wu, Y. Spatio-Temporal Patterns and Drivers of CH4 and CO2?Fluxes from Rivers and Lakes in Highly Urbanized Areas. Science of The Total Environment 2024, 918, 170689. https://doi.org/10.1016/j.scitotenv.2024.170689.
- (Meng, Y.; Li, P.; Liu, X.; Xiao, L.; Liu, J.; Zhang, C.; Yang, S.; Zhang, X.; Wang, Y.; Wang, B. Variability in the Home-Field Advantage of Litter Decomposition Mediates Alterations in Soil CO2?and CH4?Fluxes: A Transplantation Experiment Study. Science of The Total Environment 2024, 951, 175685. https://doi.org/10.1016/j.scitotenv.2024.175685.
- Wang, P.; Ouyang, W.; Zhu, W.; Geng, F.; Tulcan, R. X. S.; Lin, C. Wetland Soil Carbon Dioxide Emission Dynamics with External Dissolved Organic Matter in Mid–High-Latitude Forested Watershed. Agricultural and Forest Meteorology 2023, 333, 109381. https://doi.org/10.1016/j.agrformet.2023.109381.
- Yan, Z.; Kang, E.; Zhang, K.; Hao, Y.; Wang, X.; Li, Y.; Li, M.; Wu, H.; Zhang, X.; Yan, L.; Zhang, W.; Li, J.; Yang, A.; Niu, Y.; Kang, X. Asynchronous Responses of Microbial CAZymes Genes and the Net CO2?Exchange in Alpine Peatland Following 5 Years of Continuous Extreme Drought Events. ISME Communications 2022, 2 (1), 115. https://doi.org/10.1038/s43705-022-00200-w.
- Zhuang, W.; Li, Y.; Kang, X.; Yan, L.; Zhang, X.; Yan, Z.; Zhang, K.; Yang, A.; Niu, Y.; Yu, X.; Wang, H.; An, M.; Che, R. Changes in Soil Oxidase Activity Induced by Microbial Life History Strategies Mediate the Soil Heterotrophic Respiration Response to Drought and Nitrogen Enrichment. Front. Microbiol. 2024, 15, 1375300. https://doi.org/10.3389/fmicb.2024.1375300.
- Qi, S.; Yang, S.; Yu, W.; Hu, J.; Ma, C.; Jiang, Z.; Qiu, H.; Xu, Y. CO2?Fluxes Over Water-Saving Paddy Fields with Different Straw Management Methods on the Basis of the Same Amount of Carbon Input. J Soil Sci Plant Nutr 2024, 24 (2), 2577–2588. https://doi.org/10.1007/s42729-024-01679-z.
- Yu, X.; Hao, Y.; Yan, Z.; Li, Y.; Yang, A.; Niu, Y.; Liu, J.; Kang, E.; Zhang, K.; Yan, L.; Zhuang, W.; Zhang, X.; Kang, X. Effects of Gradient Warming on Carbon and Water Fluxes in Zoige Plateau Peatland. Water 2025, 17 (2), 241. https://doi.org/10.3390/w17020241.
- Kang, E.; Li, Y.; Zhang, X.; Yan, Z.; Zhang, W.; Zhang, K.; Yan, L.; Wu, H.; Li, M.; Niu, Y.; Yang, A.; Wang, J.; Kang, X. Extreme Drought Decreases Soil Heterotrophic Respiration but Not Methane Flux by Modifying the Abundance of Soil Microbial Functional Groups in Alpine Peatland. CATENA 2022, 212, 106043. https://doi.org/10.1016/j.catena.2022.106043.
- Yan, Z.; Wang, J.; Liu, Y.; You, Z.; Zhang, J.; Guo, F.; Gao, H.; Li, L.; Wan, S. Maize/Peanut Intercropping Reduces Carbon Footprint Size and Improves Net Ecosystem Economic Benefits in the Huang-Huai-Hai Region: A Four-Year Study. Agronomy 2023, 13 (5), 1343. https://doi.org/10.3390/agronomy13051343.
- Yan, Z.; Kang, E.; Zhang, K.; Li, Y.; Hao, Y.; Wu, H.; Li, M.; Zhang, X.; Wang, J.; Yan, L.; Kang, X. Plant and Soil Enzyme Activities Regulate CO2?Efflux in Alpine Peatlands After 5 Years of Simulated Extreme Drought. Front. Plant Sci. 2021, 12, 756956. https://doi.org/10.3389/fpls.2021.756956.
- Wang, X.; Li, Y.; Hao, Y.; Kang, E.; Han, J.; Zhang, X.; Li, M.; Zhang, K.; Yan, L.; Yang, A.; Niu, Y.; Kang, X.; Yan, Z. Soil Temperature and Fungal Diversity Jointly Modulate Soil Heterotrophic Respiration under Short-Term Warming in the Zoige Alpine Peatland. Journal of Environmental Management 2024, 370, 122778. https://doi.org/10.1016/j.jenvman.2024.122778.
- Chen, Y.; Qin, W.; Zhang, Q.; Wang, X.; Feng, J.; Han, M.; Hou, Y.; Zhao, H.; Zhang, Z.; He, J.-S.; Torn, M. S.; Zhu, B. Whole-Soil Warming Leads to Substantial Soil Carbon Emission in an Alpine Grassland. Nat Commun 2024, 15 (1), 4489. https://doi.org/10.1038/s41467-024-48736-w.
- Chen, Y.; Qin, W.; Zhang, Q.; Wang, X.; Feng, J.; Han, M.; Hou, Y.; Zhao, H.; Zhang, Z.; He, J.-S.; Torn, M. S.; Zhu, B. Whole-Soil Warming Leads to Substantial Soil Carbon Emission in an Alpine Grassland. Nat Commun 2024, 15 (1), 4489. https://doi.org/10.1038/s41467-024-48736-w.
- Chen, Y., Qin, W., Zhang, Q.?et al.?Whole-soil warming leads to substantial soil carbon emission in an alpine grassland.?Nat Commun?15, 4489 (2024). https://doi.org/10.1038/s41467-024-48736-w
- Ma, L.; Zhong, M.; Zhu, Y.; Yang, H.; Johnson, D. A.; Rong, Y. Annual Methane Budgets of Sheep Grazing Systems Were Regulated by Grazing Intensities in the Temperate Continental Steppe: A Two-Year Case Study. Atmospheric Environment 2018, 174, 66–75. https://doi.org/10.1016/j.atmosenv.2017.11.024.
- Li, S.; Ma, Q.; Zhou, C.; Yu, W.; Shangguan, Z. Applying Biochar under Topsoil Facilitates Soil Carbon Sequestration: A Case Study in a Dryland Agricultural System on the Loess Plateau. Geoderma 2021, 403, 115186. https://doi.org/10.1016/j.geoderma.2021.115186.
- Dong, Q.; Liu, Y.; He, P.; Du, W. Belowground Biomass Changed the Regulatory Factors of Soil N2O Funder N and Water Additions in a Temperate Steppe of Inner Mongolia. J Soil Sci Plant Nutr 2024, 24 (1), 606–617. https://doi.org/10.1007/s42729-023-01569-w.
- Jing-jing, Z.; Jin-song, Z.; Ping, M.; Ning, Z.; Jian-xia, L. Change of Soil CH4 Fluxes of Robinia Pseudoacacia Stand During Non-Growing Season and the Impact Factors.
- Yang, L.; Zhang, Q.; Jin, H.; Ma, Z.; Jin, X.; Marchenko, S. S.; He, R.; Spektor, V. V.; Chang, X. CO2?and CH4?Fluxes from Forest Soil in the Northern Da Xing’anling Mountains in Northeast China during the Freezing and Thawing Periods of near-Surface Soil in 2018–2019. Scandinavian Journal of Forest Research 2023, 38 (4), 275–285. https://doi.org/10.1080/02827581.2023.2208874.
- Su, C.; Kang, R.; Huang, W.; Wang, A.; Li, X.; Huang, K.; Zhou, Q.; Fang, Y. CO2?Removal with Enhanced Wollastonite Weathering in Acidic and Calcareous Soils. Soil Ecol. Lett. 2025, 7 (1), 240273. https://doi.org/10.1007/s42832-024-0273-z.
- Xu, X.; Wu, H.; Yue, J.; Tang, S.; Cheng, W. Effects of Snow Cover on Carbon Dioxide Emissions and Their δ13C Values of Temperate Forest Soils with and without Litter. Forests 2023, 14 (7), 1384. https://doi.org/10.3390/f14071384.
- Pan, Z.; Wei, Z.; Ma, L.; Rong, Y. Effects of Various Stocking Rates on Grassland Soil Respiration during the Non-Growing Season. Acta Ecologica Sinica 2016, 36 (6), 411–416. https://doi.org/10.1016/j.chnaes.2016.09.004.
- Qu, S.; Xu-Ri; Yu, J.; Borjigidai, A. Extensive Atmospheric Methane Consumption by Alpine Forests on Tibetan Plateau. Agricultural and Forest Meteorology 2023, 339, 109589. https://doi.org/10.1016/j.agrformet.2023.109589.
- Li, X.; Quan, Z.; Huang, K.; Kang, R.; Su, C.; Liu, D.; Ma, J.; Chen, X.; Fang, Y. High Soil Nitrous Oxide Emissions from a Greenhouse Vegetable Production System in Shouguang, Northern China. Atmospheric Environment 2024, 319, 120264. https://doi.org/10.1016/j.atmosenv.2023.120264.
- Rong, Y.; Ma, L.; Johnson, D. A. Methane Uptake by Four Land-Use Types in the Agro-Pastoral Region of Northern China. Atmospheric Environment 2015, 116, 12–21. https://doi.org/10.1016/j.atmosenv.2015.06.003.
- Shu, Y.; Chuying, G.; Jiayin, H.; Leiming, Z.; Guanhua, D.; Xuefa, W.; Guirui, Y. Modelling Soil Greenhouse Gas Fluxes from a Broad-Leaved Korean Pine Forest in Changbai Mountain: Forest-DNDC Model Validation.
- Ren, S.; Liu, Y.; He, P.; Zhao, Y.; Wang, C. Nitrogen and Water Additions Affect N2O Dynamics in Temperate Steppe by Regulating Soil Matrix and Microbial Abundance. Agriculture 2025, 15 (3), 283. https://doi.org/10.3390/agriculture15030283.
- Pan, Z.; Johnson, D. A.; Wei, Z.; Ma, L.; Rong, Y. Non-Growing Season Soil CO2?Efflux Patterns in Five Land-Use Types in Northern China. Atmospheric Environment 2016, 144, 160–167. https://doi.org/10.1016/j.atmosenv.2016.08.085.
- Yang, L.; Zhang, Q.; Ma, Z.; Jin, H.; Chang, X.; Marchenko, S. S.; Spektor, V. V. Seasonal Variations in Temperature Sensitivity of Soil Respiration in a Larch Forest in the Northern Daxing’an Mountains in Northeast China. J. For. Res. 2022, 33 (3), 1061–1070. https://doi.org/10.1007/s11676-021-01346-4.
- Zhang, J.; He, P.; Liu, Y.; Du, W.; Jing, H.; Nie, C. Soil Properties and Microbial Abundance Explain Variations in N2O Fluxes from Temperate Steppe Soil Treated with Nitrogen and Water in Inner Mongolia, China. Applied Soil Ecology 2021, 165, 103984. https://doi.org/10.1016/j.apsoil.2021.103984.
- Rong, Y.; Ma, L.; Johnson, D. A.; Yuan, F. Soil Respiration Patterns for Four Major Land-Use Types of the Agro-Pastoral Region of Northern China. Agriculture, Ecosystems & Environment 2015, 213, 142–150. https://doi.org/10.1016/j.agee.2015.08.002.
- Wang, Q.; Shi, J.; Wang, J.; Pan, J.; Ma, F.; Zhang, R.; Tian, D.; Liu, N.; Zhou, R.; Gao, Z.; Liu, M.; Shi, R.; Niu, S. Threshold Response of Arbuscular Mycorrhizal Mycelial Respiration to a Nitrogen Addition Gradient in an Alpine Grassland. Functional Ecology 2025, 1365-2435.70033. https://doi.org/10.1111/1365-2435.70033.
- Zhang, Y.; Naafs, B. D. A.; Huang, X.; Song, Q.; Xue, J.; Wang, R.; Zhao, M.; Evershed, R. P.; Pancost, R. D.; Xie, S. Variations in Wetland Hydrology Drive Rapid Changes in the Microbial Community, Carbon Metabolic Activity, and Greenhouse Gas Fluxes. Geochimica et Cosmochimica Acta 2022, 317, 269–285. https://doi.org/10.1016/j.gca.2021.11.014.
- Jia, Z.; Li, P.; Wu, Y.; Yang, S.; Wang, C.; Wang, B.; Yang, L.; Wang, X.; Li, J.; Peng, Z.; Guo, L.; Liu, W.; Liu, L. Deepened Snow Cover Alters Biotic and Abiotic Controls on Nitrogen Loss during Non-Growing Season in Temperate Grasslands. Biol Fertil Soils 2021, 57 (2), 165–177. https://doi.org/10.1007/s00374-020-01514-4.
- Wang, J.; Quan, Q.; Chen, W.; Tian, D.; Ciais, P.; Crowther, T. W.; Mack, M. C.; Poulter, B.; Tian, H.; Luo, Y.; Wen, X.; Yu, G.; Niu, S. Increased CO2?Emissions Surpass Reductions of Non-CO2?Emissions More under Higher Experimental Warming in an Alpine Meadow. Science of The Total Environment 2021, 769, 144559. https://doi.org/10.1016/j.scitotenv.2020.144559.
- Xue-Yuan Z.; Cui-Ping G.; Jing-Lei T.; Yi Z.; Lei T.; Guo-Dong H.; Hai-Yan R.; Key Laboratory of Grassland Resources of the Ministry of Education, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China. Responses of soil CH4?and CO2?flux to warming and nitrogen addition during freeze-thaw cycles in a desert steppe of Nei Mongol, China. Chinese Journal of Plant Ecology 2024, 48 (10), 1291–1301. https://doi.org/10.17521/cjpe.2024.0040.
| | |
| | 多參數(shù)高精度測(cè)量、長(zhǎng)期穩(wěn)定運(yùn)行,適應(yīng)極端環(huán)境,智能遠(yuǎn)程 |
| | 用于測(cè)量土壤CO2通量,操控輕便靈活,適合短期實(shí)驗(yàn) |
| | 超便攜土壤/水面?CH4/CO2通量測(cè)量,易于野外攜帶和操作;設(shè)計(jì)獨(dú)特,測(cè)量結(jié)果更準(zhǔn)確。 |
關(guān)注“理加聯(lián)合”公眾號(hào),回復(fù)“文獻(xiàn)”獲取相關(guān)產(chǎn)品文獻(xiàn)
北京理加聯(lián)合科技有限公司是一家專注于生態(tài)環(huán)境科學(xué)研究的專業(yè)公司。我們代理、研發(fā)、生產(chǎn)和銷售高品質(zhì)的生態(tài)環(huán)境儀器,并為客戶提供卓越的售后服務(wù)。為了更好地支持科研人員的科研與創(chuàng)新工作,同時(shí)提升企業(yè)在科研服務(wù)與社會(huì)回饋方面的品牌形象,我們于2021年設(shè)立了為期三年的公益性質(zhì)的第一期獎(jiǎng)勵(lì)基金,取得了良好的公益成果,為科研服務(wù)貢獻(xiàn)了一份微薄的力量。為了更好的服務(wù)和回饋社會(huì),現(xiàn)決定設(shè)立第二期獎(jiǎng)勵(lì)基金。獎(jiǎng)勵(lì)辦法及獎(jiǎng)勵(lì)條件
1. 使用理加公司自主研發(fā)生產(chǎn)的儀器,并在文章中明確注明儀器生產(chǎn)廠家、名稱及型號(hào)(要求詳見(jiàn)第五條);2. 文章需在獎(jiǎng)勵(lì)期限(2025-2027年)內(nèi)發(fā)表;3. 文章要求:限中文核心期刊及 SCI 收錄期刊;4. 本獎(jiǎng)金獎(jiǎng)勵(lì)文章的第一作者,由第一作者申請(qǐng)本獎(jiǎng)金,如有多個(gè)共同第一作者,請(qǐng)自行協(xié)調(diào)獎(jiǎng)金歸屬和分配事宜;5. 獎(jiǎng)勵(lì)標(biāo)準(zhǔn):1)?國(guó)內(nèi)核心期刊1000元/篇;2) SCI收錄期刊:影響因子10以下(不含 10),獎(jiǎng)勵(lì)2000元/篇;影響因子10及以上,獎(jiǎng)勵(lì) 5000 元/篇;3)?中文核心期刊目錄及 SCI 影響因子,以上一年度公布的數(shù)據(jù)為準(zhǔn);獎(jiǎng)勵(lì)產(chǎn)品型號(hào)及公司名稱
(一)本基金適用于 LICA 自主研發(fā)生產(chǎn)的以下產(chǎn)品:1.LI-2100全自動(dòng)真空抽提系統(tǒng)/ LI-2100 Automatic Cryogenic Vacuum Distillation Water Extraction System2.LI-2200全自動(dòng)真空抽提系統(tǒng)/ LI-2200 Automatic Cryogenic Vacuum Distillation Water Extraction System3.SF-3500/SF-9000/PS-9600/PS-3000系列/PS-9000/PS-2000系列土壤溫室氣體通量監(jiān)測(cè)系統(tǒng)/?Soil Greenhouse Gas Flux Monitoring System4.IRIS激光雷達(dá)高光譜機(jī)載系統(tǒng)/ LR1601高光譜一體機(jī) LR1601 Airborne Hyperspectral Lidar Combined System/ 300L2高光譜機(jī)載系統(tǒng) 300L2 Aieborne Hyperspectral System/ 300TC高光譜機(jī)載系統(tǒng) 300TC Airborne Hyperspectral Compact System5.IRIS植物表型測(cè)量系統(tǒng)/HPPA高光譜植物表型系統(tǒng) Hyperspectral Plant Phenotype System6.IRIS日光誘導(dǎo)葉綠素?zé)晒庥^測(cè)系統(tǒng)/ iSIF Solar induced fluorescence monitoring system7.?HS1000/HS2000高光譜傳感器/ Hyperspectral Sensor(二)公司名稱:
Beijing LICA United Technology Limited.獎(jiǎng)勵(lì)產(chǎn)品型號(hào)及公司名稱
文章第一作者提交申請(qǐng),經(jīng)獎(jiǎng)勵(lì)基金評(píng)審組評(píng)審?fù)ㄟ^(guò)后,獎(jiǎng)金將在一個(gè)月內(nèi)發(fā)放。1.?獲獎(jiǎng)?wù)唔氉孕谐袚?dān)相應(yīng)的所得稅;