車厘子,相信大家都不陌生,畢竟“車厘子自由”曾經也是風靡一時的網絡熱詞。但是車厘茄是什么呢?車厘子的變種?車厘子和茄子的結合?空想不如實干,看看度娘怎么說......嚯,原來車厘茄就是常見的小番茄!另外,小加還了解到車厘茄含有豐富的維他命和十分高的鐵質含量,不僅有美容功效,還可以預防出現貧血,可謂是值得多次購買的營養好物。但是購買時,我們只能通過樸素的雙眼判斷其好壞,如果從專業性的角度出發,該如何評估車厘茄的質量呢?答案就在下面這篇論文里,快一起來看看吧!基于深度學習和高光譜圖像估算車厘茄可溶性固形物含量及硬度車厘茄(Solanum lycopersicum)因其特殊的香味深受世界各地消費者喜愛。可溶性固形物(SSC)和硬度是評估產品質量的兩個主要指標。現存的測量技術主要依賴于化學方法。然而,這種破壞性的方法不適用于大面積的測量。高光譜成像技術可以同時獲取光譜信息和空間信息,已廣泛應用于各個領域,如植物病害脅迫檢測、工業食品包裝、醫學圖像分類及水果質量分析。基于此,來自浙江工業大學和浙江省農業科學院的研究人員選擇當地主流的車厘茄(Zheyingfen-1)為研究對象,測量其硬度和SSC,并基于高光譜圖像(PIKA XC 高光譜相機,Resonon Inc.,Bozeman,MT,USA)和相應的深度學習回歸模型開發了無損式測量技術。高光譜成像系統【結果】(A)校正的光譜反射率圖。(...
發布時間:
2023
-
02
-
13
瀏覽次數:18
水溶性有機物(WSOC)以氣體和顆粒物的形式大量存在于大氣中,在大氣水反應和云凝結核(CCN)形成中發揮著重要的作用,對全球和區域氣候變化有著重要影響。此外,某些WSOC是有毒的,它會影響人類健康。WSOC可從源中直接排放或從氣態和顆粒有機質(OM)的光氧化中二次產生。目前,只進行了有限的測量來理解WSOC劃分機制。結果表明,氣體-顆粒物相劃分取決于很多因素,例如氣象參數、氣體物質組成和凝結相性質。將氣相WSOC(WSOCg)分配到氣溶膠相(WSOCp)是大氣二次有機氣溶膠的主要形成路徑。然而,WSOC劃分過程的基本機制尚不清楚。基于此,在本文中,來自華東師范大學、上海市環境科學研究院和上海市環境監測中心的研究團隊于2019年冬季在長江三角洲河口濕地生態系統野外科學觀測站(31°44′N,121°13′E)同時測量了氣體和顆粒物,包括NH3(Picarro G2103),有機酸(草酸、甲酸和乙酸)、無機離子(陽離子:Na+,NH4+,K+,Ca2+和Mg2+;陰離子:SO42?,NO3?和Cl?)和WSOC。為了全面理解WSOCp形成機制,作者還測量了300-550 nm WSOCp的光學吸收,同時測量了PM2.5并調查了氣體-氣溶膠相劃分的影響因素以全面理解中國大氣,尤其是嚴重冬季霧霾區的有機氣溶膠行為。【結果】研究區主要污染物的時間變化。ALWC和pH對WS...
發布時間:
2023
-
02
-
09
瀏覽次數:18
土壤中重金屬是有害的,其遷移和累積會嚴重威脅生態環境安全和人類健康。砷(As)具有高神經毒性和致畸性。人類活動,例如采礦和工業生產會導致大量As釋放到土壤中。快速準確確定土壤中As濃度對As污染評估至關重要。傳統的重金屬調查方法旨在對野外采集的土壤樣品進行化學性質測試,費事費力、成本高。高光譜遙感具有高光譜分辨率、寬波段范圍和連續光譜信息等特點,已廣泛用于土壤重金屬濃度的估算。然而,現存的基于高光譜數據的土壤重金屬濃度估算模型忽視了土壤光譜和重金屬濃度之間的空間非穩態。基于此,來自首都師范大學的一組研究團隊以北京東北部地區(40°10′0″-40°15′30″ N,116°58′4″-117°5′4″ E)為例,基于實驗室測得的光譜數據(ASD FieldSpec 4光譜儀),結合地理加權回歸(GWR)和XGBoost算法提出了一種新的模型(GW-XGBoost模型)來估算土壤重金屬濃度。并評估了所提出模型的有效性。研究區和采樣位置。As濃度估算過程流程圖。【結果】As和光譜的相關圖。陰影快表示主要化學吸收范圍。As濃度實測值與預測值關系散點圖。As濃度實測值與預測值擬合比較圖。【結論】估算模型選擇的光譜波段與表面含有能與As形成復合物的官能團的光譜活性物質的吸收效應有關。構建模型時考慮該吸收機制可以有效降低高光譜數據的冗余。GW-XGBoo...
發布時間:
2023
-
02
-
07
瀏覽次數:19
中國是最大的溫室蔬菜生產國,約占世界生產面積的83%。由于全年生產和大量施肥,溫室蔬菜產量高,但也導致了土壤質量的惡化和嚴重的環境問題。近來,無土栽培系統(SCS)在溫室蔬菜生產中逐漸發展起來,它可以減少甚至消除傳統栽培方式的許多問題,。在SCS中,無土栽培基質,也稱為無土栽培生長介質,可代替土壤固定根系系統,為植物提供水分和養分,為根區提供充足的通風。然而,由于N肥的大量輸入,N2O排放較高。N2O是一種溫室氣體,具有溫室效應,加劇全球變暖,在大氣中存留時間長,可輸送到平流層,導致臭氧層破壞,引起臭氧空洞。無土栽培基質已成為SCS中N2O排放的主要載體,但尚不清楚其產生和消耗的相關途徑,因此亟待研究SCS無土栽培基質的N2O排放源。且無土栽培基質與土壤理化和生物性質高度不同,其具有更準確的水和養分分布,因此也有必要確定管理措施對SCS中N2O排放的影響。基于此,在本文中,來自中國農業科學研究院的一組研究團隊基于穩定同位素技術結合qPCR分析在兩種灌溉模式下(滴灌和潮汐灌溉)對成都市農林科學院((103°86′E,30°71′N)溫室里兩種無土栽培基質(60%泥炭+20%珍珠巖+20%蛭石+少量植物纖維/商用椰殼纖維基質)進行了相關研究,共設置4種處理:滴灌+泥炭基質(PD),滴灌+椰殼基質(CD),潮汐灌溉+泥炭基質(PT)以及潮汐灌溉+椰殼基質(CT)。旨在...
發布時間:
2023
-
02
-
02
瀏覽次數:10
松材線蟲病(PWD),是由松材線蟲(Bursaphelenchus xylophilus)引起的具有毀滅性的國際森林病害之一,可以在幾個月內對松林造成快速、大面積的危害,已對我國造成了巨大的生態和經濟損失。因此,及時的監測措施非常必要。高光譜遙感可以獲取數百個波段和連續波長的數據來捕獲受危害樹木的生理變化,有助于檢測早期病蟲害。而基于無人機的高光譜成像儀可以準確觀測樹木冠層的變化,成為評估森林健康情況的有效工具。然而,以往的研究大多使用單日的無人機高光譜數據,難以監測病害發生的時間變化并確定最佳的監測時期。基于此,在本研究中,來自北京林業大學的研究團隊于2021年5-10月使用多時態的數據在中國遼寧省撫順市東洲區(124°12′36′′ -124°13′48′′ E,41°56′53′′ -41°57′46′′)進行了研究。在PWD爆發期間,作者于2021年5月9日、6月9日、7月11日、8月11日、9月13日和10月21日對紅松林進行了地面調查(通過形態和分子鑒定確定59棵樹攜帶松材線蟲,另外選擇59棵未被感染的樹木作為對照)。于2021年5月11日、6月10日、7月12日、8月18日、9月15日和10月23日晴朗無云的天氣條件下利用DJI Matrice 600 Pro無人機搭載Resonon Pika L高光譜相機以及LR1601-IR...
發布時間:
2022
-
12
-
30
瀏覽次數:23
土壤質量直接影響其有機體的健康。然而,土壤容易受到人類活動的干擾,如采礦、工業化和農業活動,導致嚴重的土壤污染。在各種土壤污染中,有毒元素會對人類和家畜健康以及食品安全造成威脅。因此,監測這些污染類型的濃度和分布對于土壤修復項目至關重要。然而,傳統采樣和實驗室分析方法成本高、費事費力且局限于采樣點位置,不能很好地具體化濃度的空間分布。因此,需要具有高空間效應的快速有效的技術。許多研究已經利用圖像光譜和其它輔助數據或環境變量來預測有毒元素的分布。而由于衛星圖像中云或陰影的存在,土壤采樣和圖像獲取日期存在差距,這種情況下,需要用到具有不同光譜和空間特征圖像的融合,以增加圖像的時間分辨率。Sentinel-2A是“全球環境與安全監測”計劃的第二顆衛星,其攜帶一枚多光譜成像儀,可覆蓋13個光譜波段,從可見光和近紅外到短波紅外,具有不同的空間分辨率。Landsat 8是美國陸地衛星計劃的第八顆衛星,其攜帶的陸地成像儀包括9個波段,空間分辨率為30 m。兩者的協同應用將改進對地球表面的及時和準確觀測,以及遙感不同學科的使用。基于此,在本研究中,來自捷克生命科學大學的研究團隊于2015年8月12日在Sarcheshmeh礦山采集了120個土壤樣品,在實驗室進行化學(As、Pb、Zn和Cr)和光譜測量(ASD Fieldspec 3地物光譜儀)。并于2015年8月13日獲取Landsat 8-OL...
發布時間:
2022
-
12
-
28
瀏覽次數:19
近幾十年來,北極氣溫上升超過全球平均氣溫的兩倍,且在2100年以前,可能會增加2-8℃。近年來野火頻繁發生和蔓延,它以不同的方式干擾著生態系統,包括破壞地上和地下植物生物量以及通過改變C、N和P有效性改變土壤性質。在高緯度地區苔原火災的頻率和范圍與氣候條件有關,火災事件的增加與夏季變干變暖有關。氣候變化會改變北極無冰區陸地生態系統土壤和大氣之間CH4,CO2和N2O的交換。大約一半的全球土壤C沉積在北極中,氣候變化和野火增加會導致大量C釋放到大氣中,影響全球C收支,導致氣候正反饋。同時也有研究表明,野火會導致排水良好的針葉林土壤中CH4吸收速率增加。然而,野火對苔原生態系統C和N循環的短期和長期影響理解匱乏,且尚不清楚野火對苔原生態系統土壤CH4,CO2和N2O通量的影響。基于此,在本文中,來自哥本哈根大學的研究團隊于2017-2019年在西格陵蘭島凱凱塔蘇瓦克島(69°16′N,53°27'W)南端的Blæsedalen原位調查了環境和增溫條件下實驗火燒對CO2,CH4(Picarro G4301)和N2O通量的影響。作者同時收集了氣溫和降水數據。燃燒過程中測量和記錄了2和5 cm深度的土壤溫度。2017年8月,2018年7月和2019年7月采集0-5 cm土壤,分析了其總和可溶性C、N和P。分析了2017年樣品的pH和C:N比。提取潮濕土壤...
發布時間:
2022
-
12
-
20
瀏覽次數:12
文章來源:Picarro Blog在Picarro公司,我們樂于聽到研究小組如何將我們的系統運用到他們的項目中。來自圣彼德堡北極與南極研究所(AARI)的安娜·科薩切克(Anna Kozachek)撰寫了一篇短文,其中講述了她的團隊如何在南極環航探險 (ACE) 項目中使用Picarro L2130-i和L2120-i的詳情。南極環航探險(ACE)由萌睿基金會(ACE Foundation)、瑞士極地研究所(SPI)和俄羅斯圣彼得堡的北極與南極研究所(AARI)共同組織發起。探險隊一起登上俄羅斯特列什尼科夫院士(Akademik Tryoshnikov)號考察船。探險隊此行的主要目的是環航南極洲,沿著環航路線進行海洋觀測和氣象觀測,同時對亞南極洲和南極諸島進行陸地觀測。探險隊從開普敦(Cape Town)出發,將于92天后返航。詳細路線圖此次探險活動承載著來自七個不同國家和地區的55名科學家著手進行的22個項目。這個名為“亞南極島嶼生態系統的演變及其現狀”的 AARI 項目涉及了若干項研究課題,包括湖泊沉積物取樣、島上土壤取樣、過去海平面變化的地貌觀測、大氣中懸浮微粒的測量和大氣水蒸汽的同位素組成。我們的實驗室,即AARI的氣候與環境研究實驗室,此行的主要考察任務是研究冰芯數據中的古氣候。在過去幾個世紀,南極洲長期缺少氣象站,人們記錄高頻氣候變化的唯一途徑就是測量南極洲不...
發布時間:
2022
-
12
-
08
瀏覽次數:33
鹽沼是地表過濕或季節性積水、土壤鹽漬化并長有鹽生植物的地段。濱海鹽沼以草本植物為主,沿潮間帶延伸,可忍受高鹽條件和因漲潮引起的周期性淹水。鹽沼植被生產力高,可為許多物種提供繁殖、覓食和越冬的場所。鹽沼植被地上生物量(AGB)的估算為監測鹽沼生態系統時空穩定性、生產力和地上碳儲量提供了有用信息。然而,以往關于AGB的估算研究主要局限于站點水平,且通常基于單一植被類型。與野外地面調查方法相比,遙感(RS)衛星成本低、速度快、范圍廣,在鹽沼植被結構和生物物理指標的空間估計方面更具優勢。其中,UAV-LiDAR數據具有較高的時空分辨率,在濱海鹽沼三維結構監測中具有很大潛力。然后目前,利用UAV-LiDAR數據估算鹽沼植被AGB的研究有限。為了確定濱海鹽沼潮溝對植被群落空間分布及其生物量的影響, 來自復旦大學的研究團隊在上海崇明東灘濱海濕地(121°54′-121°55′E,31°27′-31°28′N)進行了研究,主要目的為:(1)探索UAV-LiDAR數據估算鹽沼植物AGB的潛力;(2)研究潮溝對鹽沼植物群落空間格局及其地上C儲量的影響。作者于2019年9月基于DJI M600平臺,利用LR1601-IRIS LiDAR傳感器(北京理加聯合科技有限公司,北京依銳思)收集UAV-LiDAR數據。于2019年9月27日和28日獲取光學圖像數據。于201...
發布時間:
2022
-
12
-
06
瀏覽次數:27
土壤水力參數,如田間持水量(FC)和永久萎蔫點(PWP),在灌溉管理、干旱風險評估和土地利用規劃等方面發揮著重要作用。這些水力特性是動態的,隨土壤類型、作物類型和生長季而變化。傳統方法估算大尺度水力特性費時費力,而土壤傳遞函數(PTF)作為一種替代方法,已被用于使用易測量的土壤特性(如土壤粒級、有機碳和容重)來估計土壤水力特性。這些預測參數在很大程度上受各種內在土壤特性如土壤質地、結構、有機質、容重和孔隙度的影響。隨著光譜技術的不斷發展,因其快速、低成本和無損測量,許多研究者已經利用可見近紅外(Vis-NIR)光譜預測了土壤特性,而使用光譜數據繪制印度土壤類型水力特性的研究非常有限。基于此,在本研究中,一組研究團隊在印度卡納塔克邦高原北部地區收集了558個土壤樣本,在實驗室中測量了其FC, PWP和土壤含水量,并利用ASD FieldSpec光譜儀測量土壤光譜反射率。通過支持向量機、隨機森林和偏最小二乘回歸三個模型預測FC和PWP。其中,2/3的數據集用于校準(368個樣品),1/3的數據集用于驗證(190個樣品)。本研究目標為通過不同統計技術檢驗實驗室Vis-NIR光譜數據估算水力參數的有用性。研究區域圖【結果】卡納塔克邦高原北部土壤光譜反射率分布(平均值和標準偏差)(N = 558)。FC和PWP預測模型的性能(50 次迭代)驗證集FC和PWP預測值和觀測值散點圖(RF方法)(...
發布時間:
2022
-
11
-
18
瀏覽次數:15