?如何在生態和環境科學研究中運用穩定同位素?(From ibcas SELLER)
?? 穩定同位素技術的出現加深了生態學家對生態系統過程的進一步了解,使生態學家可以探討一些其它方法無法研究的問題。正如現代分子生物技術大大地推動了基因、生物化學和進化生物學的研究一樣,穩定同位素技術對生態學研究也已產生了重要的影響。通過使用穩定性同位素技術,可以使生態學家測出許多隨時空變化的生態過程,同時又不會對生態系統的自然狀態和元素的性質造成干擾。在過去的十幾年中,一些生態與環境科學的最令人矚目的進步依賴于穩定性同位素技術,穩定性同位素能夠被用來解決生態與環境科學的許多問題。包括:
1.植物如何有效地利用水分(13C)?
2.植物從土壤哪個層次獲得水分(18O, 2H)?
3.植物通過氮固定或吸收土壤NH4+及NO3-獲得氮素相對比率(15N)?
4.如何確定土壤中碳和氮周轉速率(13C, 15N)?
5.區分土壤呼吸釋放CO2的來源(植物根系或土壤微生物)(13C, 18O)
6.區分光合和呼吸對凈生態系統CO2交換或NEE的相對貢獻(13C, 18O)
7.區分蒸騰和蒸發對凈生態系統水交換或蒸散(ET)的相對貢獻(2H, 18O)如何8.判定N2O的來源(硝化細菌或反硝化細菌)(15N, 18O)?
9.確定食物網初級消費者事物來源(13C, 34S)
10.確定食物鏈的長度(15N)
11.如何確定空氣和水體污染物的來源(15N, 34S, 18O)
12.確定城市能源消耗對大氣CO2, CO和氮化物的貢獻((13C, 15N, 18O)
13.判斷動物如候鳥、蝴蝶等的遷徙路線(18O, 2H)
14.判定史前人類社會是否以谷物作為食物來源(13C)
15.確定植物的分布區域(15N, 18O, 2H)
??? 與其它技術相比,穩定同位素技術的優點在于使得這些生態和環境科學問題的研究能夠定量化并且是在沒有干擾(如沒有放射性同位素的環境危害)的情況下進行。有些問題還只能通過利用穩定同位素技術來解決。例如,植物在光合作用傾向于吸收含有輕碳同位素(12C)的CO2,其吸收程度受有效水含量和光合途徑影響,水分有效性和光合途徑是干旱或濕潤環境植物的重要特性。因此,植物13C組成能夠在時間尺度上整合反映植物的水分利用效率。通過測量植物莖水2H和18O組成,也能夠判定植物對表層水和深層水的依賴程度。另一方面,通過向土壤添加15NH4+,并監測14NH4+對其稀釋速率,就能夠測定獨立于硝化和固持(NH4+消耗過程)之外的土壤有機物質的礦化速率。通過在原位添加富含15N的NH4+或NO3-,并監測土壤中15N和14N,就能夠量化每種微生物轉化量。